Algebra II

$$
\text { (6) } \begin{aligned}
& \frac{\frac{t^{2}-3 t}{2} \text { or } \frac{t(t-3)}{2}}{\frac{z(z+2)}{z-2}} \frac{\frac{r}{r+5}}{\frac{x-a}{x+a} o r \frac{a-x}{-x-a} \text { or }-\frac{a-x}{x+a}} \\
& \frac{2 t-1}{2 t+1} \\
& \frac{3+2 z}{3 z+2}-\frac{3-2 z}{3 z+2}=\frac{3+2 z}{-3 z-2}
\end{aligned}
$$

2) $\frac{3 t^{4}-9 t^{3}}{6 t^{2}}$

$$
\frac{t^{2}-3 t}{2}
$$

6)

$$
\begin{gathered}
\left(r^{2}-r s\right)\left(r^{2}-s^{2}\right)^{-1} \\
\frac{\left(r^{2}-r s\right)}{\left(r^{2}-s^{2}\right)}=\frac{r(r-s)}{(r+s)(r-s)} \\
\frac{r}{r+s}
\end{gathered}
$$

$$
\begin{aligned}
& \text { 8) } \frac{(a-x)^{2}}{\left(x^{2}-a^{2}\right)}=\frac{(a-x)^{2}}{(x+a)(x-a)} \\
& \frac{(a-x)(a-x)}{(x+a)(x-a)}=\frac{-1(x-a)(a-x)}{(x+a)(x-a)} \\
& \frac{-1(a-x)}{x+a} \\
& \frac{-a+x}{x+a} \text { or } \frac{x-a}{x+a} \text { or }-\frac{a-x}{x+a} \\
& \frac{x-a}{a-x}=-1
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 12) } \begin{array}{ll}
\frac{9-4 z^{2}}{6 z^{2}-5 z-6} & \text { 18) } \\
\begin{array}{ll}
\left(1-r^{3}\right)(1-r)^{-3} \\
(3 z+2)(3-2 z)(3+2 z) \\
(3 z+3) & \frac{1^{3}-r^{3}}{(1-r)^{3}} a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
-\frac{3+2 z}{3 z+2} & \frac{(1-r)\left(1^{2}+1 r+r^{3}\right)}{(1-r)^{32}} \\
& \frac{1+r+r^{2}}{(1-r)^{2}}
\end{array}
\end{array} \$=\begin{array}{l}
\text { (2z-3}
\end{array} &
\end{array}
$$

30)

$$
\begin{aligned}
& \text { 30) } \frac{t^{4}-1}{\left(t^{3}+t^{2}+(t+1)\right.}=\frac{\left(t^{2}+1\right)\left(t^{2}-1\right)}{t^{2}(t+1)+((t+1)}=\frac{\left(t^{2}+1\right)\left(t^{2}-1\right)}{(t+1)\left(t^{2}+1\right)} \\
& =\frac{(t+1)(t-1)}{t+1}=t-1
\end{aligned}
$$

40)

$$
\begin{aligned}
& \frac{x^{2}+y^{2}-z^{2}-2 x y}{x^{2}-y^{2}+z^{2}-2 x z}=\frac{\left(x^{2}-2 x y+y^{2}\right)-z^{2}}{\left(x^{2}-2 x z+z^{2}\right)-y^{2}}=\frac{(x-y)(x-y)-z^{2}}{(x-z)(x-z)-y^{2}} \\
& \frac{(x-y)^{2}-z^{2}}{(x-z)^{2}-y^{2}}=\frac{(x-y+z)(x-y-z)}{(x-z+y)(x-z-y)}=\frac{x-y+z}{x+y-z}
\end{aligned}
$$

